
MUMPS Language Issues
Thomas C. Salander

The Connections Group
3629 Kimble Road

Baltimore, MD 21218 301-889-0447

Datatypes: Strong, Weak and Imaginary

"MUMPS is typeless." "We only have one data type." "Everything is a string."

Depending on your point of view, these are all true statements. MUMPS is called typeless because
there are no type declarations. The explicit data type for data storage is the variable length character
string. Any variable can be assigned any literal value.

But viewing MUMPS as "typeless" may lead to problems. In fact, MUMPS has many data types,
although most of them are implicit. Strongly typed languages, such as Ada, Algol, and FORTRAN,
require a variable to be declared with an explicit data type before execution. The primary justification
for this static typing is the reduction of errors within modules of code. At the other end are the
dynamically typed languages such as Bliss, MUMPS and REXX. Dynamic typing provides the
programmer a much greater degree of freedom in both program design and implementation.

MUMPS is a high level language with a less formal, programmer controlled type management. This
flexibility requires a more sophisticated automation of type interpretation. MUMPS is context
sensitive. That is, a given character, operator, or variable will be interpreted differently depending on
the context in which it is being used. For the determination of data type, MUMPS will take one of two
approaches. Sometimes MUMPS will take the whole data value and treat it as if it were the "correct"
(meaning expected) data type. In other contexts, MUMPS will use as much of the data as makes sense
(starting from the left) for the expected data type.

This second method is called type coercion. Type coercion is the process MUMPS uses to make the
transformation from one data type to another. When used to discuss people, coercion implies getting
someone to do something that they might not normally do (or to do something against their better
judgment). In MUMPS, the coercion is less sinister (unless you are an advocate of strong, explicit data
typing). Generally, coercion will occur whenever a numeric, integer, or truth value is expected. We
also can refer to type coercion as type conversion.

All operators, most functions, and a few commands will coerce the correct data type. The rule is, if the
expected data type is a siring, numeric, integer, or truth value, coercion can be used. If the expected
data type is anything else, the actual data must be complete and in the correct format. The return
values are always in the correct format for the indicated data type.

Understanding the different MUMPS data types is not just an academic exercise. When we develop
MUMPS routines, we usually use expressions as the arguments of functions. Less frequently, but just
as importantly, we use expressions as the arguments of commands. We also build expressions from
other expressions (the onion approach to coding). Implicit in this is the expectation that we know

what data type we need in a given context and what data type we will get back by each operation.
(And if we don't, then we better not go anywhere NEAR indirection!)

What follows is a discussion of MUMPS data types: explicit, implicit, and imaginary. I have listed
where the particular data type is expected (or coerced), and where it is returned. Note that some
functions will take more than one data type in the same location.

String

Anyone who has programmed in MUMPS, read an article on the language, or talked with any of the
MUMPS zealots, has heard that the string is the only MUMPS data type. A string is any collection of
characters, 0 or more characters in length. (For portability, the standard restricts the length to a
maximum of 255 and the characters must be from the ASCII character set.) That's it. It can be anything.
It is this free formed anarchy that can send shivers down the spine of a strong data typing advocate.

The string is the result of evaluation of an expression. It is from the string that MUMPS derives most
of the other data types. The string and the data types that can be derived from a string are often called
simple data types. In MUMPS, the distinction is with the address data type (discussed below starting
with names).

Format: any collection of characters; variable length

Coercion: all characters are taken without modification

Examples: the list below contains examples of strings. Note that the quotation marks are included
as you would use the string in an assignment operation (set x="TEST"). The quotes
are not part of the string.

Examples:
"12345"

"49.95"

"-2"

"25Kate"

"MUMPS Users"

"0.30-"

"+-+-5-"

"+18-6"

"TEST"

"-TEST"

"3.20E5"

"-3.20E5"

"12345"

"-3.20E-5"

"3.20Elenor"

"3.20e5"

"3.20E2.5"

"" (null)

Input To:

function or operator argument comment

? pattern match

[contains

] follows

= equals; except for the first occurrence in the argument of
the SET command, the equals is a truth-operator and is
checking string identity.

_ (underscore) concatenate

$ASCII 1st

$EXTRACT 1st

$FIND 1st, 2nd looks for the 2nd argument within the first argument.

$JUSTIFY 1st is viewed as a string only if there is no 3rd argument
present.

$LENGTH 1st

$PIECE 1st the string from which a piece is to be returned.

$PIECE 2nd the delimiter that identifies the pieces within the 1st
argument.

$SELECT 2nd This is actually the second piece (by colon) of every
argument of the function.

$TRANSLATE 1st the string to be translated

2nd the list of characters to be translated in the 1st argument.

3rd the characters that will replace the characters identified
in the 2nd argument.

CLOSE command the simple form, without parameters, may be an
expression that is evaluated as a string.

OPEN command the simple form, without parameters, may be an
expression that is evaluated as a string.

READ command will display any string used as an argument if the
expression that produced the string is a literal.

USE command the simple form, without parameters, may be an
expression that is evaluated as a string.

WRITE command will display any string resulting from an expression
used as an argument.

Returned By:

function or operation comment

_(underscore) concatenation

$IO special variable

$CHAR

$EXTRACT

$FNUMBER while this function formats numbers, the results are usually NOT pure
numeric values.

$GET either the value of the variable identified in the argument, or a null

$JUSTIFY

$PIECE

$SELECT returns the string associated with the first true expression.

$TRANSLATE returns the 1st argument with all the characters identified in the second
argument replaced by the corresponding characters in the second
argument.

Numeric

Take a string and look at each character starting from the left. When you find a character that no
longer makes sense as a number, stop. Everything before that is the numeric value of the string. Minus
and plus signs (any number) may occur at the beginning and still count as numeric. They are not valid
after any other numeric characters (that is, 012+345 is not a valid numeric). A decimal point can occur
once, but not twice. Other than these exceptions, any non-numeric character will end the numeric
interpretation of a string.

The exception to this description is exponentiation. Any number may be followed by an E (for
exponential notation) that is followed by a plus or minus sign followed by one or more integers.

Once MUMPS finds that portion of the string that is the numeric value, MUMPS will do a final
transformation into the canonic form of the number. A canonic number is the decimal value without
leading or trailing decimal zeros and a leading sign only for negative numbers.

It is possible to use MUMPS code to determine the numeric value of any string, by using the unary
operator plus ("+").

Example: set number=+string
Format: optional minus sign followed by one or more numeric characters (the first numeric is

not a zero)
or optional minus sign followed by zero or more numerics followed by a decimal point

followed by one or more numerics (the last numeric is not a zero)
or zero

Coercion:
1. scan the string from left to right until the first character that does not "make sense" as a number

is found
2. truncate from that character to the end of the string
3. resolve multiple signs to a single sign
4. convert to decimal form
5. drop leading plus sign
6. drop leading minus sign on zero value
7. drop leading zeros
8. drop trailing fractional zeros

Examples:
string numeric portion canonic number
12345 12345 12345
49.95 49.95 49.95
-2 -2 -2
25Kate 25 25
-0.3 0.3 0.3
+-+-5- +-+-5 5
+18-6 18 18
TEST (note: null) 0
-TEST - 0
3.20E5 3.20E5 320000
-3.20E5 '-3.20E5 -320000
-3.20E-5 -3.20E-5 -.0000032
3.20Elenor 3.20 3.2
3.20e5 3.20 3.2
3.20E2.5 3.20E2 320

Input To:
operator argument comment

 + addition

 - subtraction

 * multiplication

 / division

 \ integer division

 # modulo

< less than

> greater than

$JUSTIFY 1st The first argument is assumed to be numeric only when
the third argument (number of decimal places for
rounding) is present.

$FNUMBER 1st The first argument is always assumed to be numeric.

HANG command

timeouts

Returned By:
 function or operation
+ addition
- subtraction
* multiplication
/ division

Integer

Integers are always whole numbers. To coerce an integer, MUMPS starts with a numeric and then
drops (truncates) the decimal and all digits that follow. No rounding takes place.

To use MUMPS code to determine the integer value of any string (and remember that this would
include numbers), an integer division by 1 can be used.

Example: set integer=string\1
Format: optional minus sign followed by one or more numeric characters (the first numeric is

not a zero)
or zero

Coercion:
1. coerce numeric value
2. delete decimal point and all fractional digits

Examples:
string canonic number integer value

12345 12345 12345

49.95 49.95 49

-2 -2 -2

25Kate 25 25

.30- 0.3 0

+-+-5- 5 5

+18-6 18 18

TEST 0 0

-TEST 0 0

3.20E5 320000 320000

-3.20E5 -320000 -320000

-3.20E-5 -.000032 0

3.20Elenor 3.2 3

3.20e5 3.2 3

3.20E2.5 320 320

Many MUMPS functions require integers for some of their arguments:

Input To:

function argument comment

$ASCII 1st identifies the character for which the code is to be returned

$CHAR all Like the $SELECT function, $CHAR takes one or more arguments
(that is , the maximum number of arguments is not specified). Each
argument is the code for a character.

$EXTRACT 2nd, 3rd starting and ending character positions.

$FIND 3rd the starting character for the search of a string

$FNUMBER 3rd number of decimal places for rounding

$JUSTIFY 2nd width of field within which to right-justify the string in the first
argument.

3rd number of decimal places for rounding.

$PIECE 3rd, 4th starting and ending piece positions

$RANDOM 1st maximum value, plus 1, of random number.

Returned By:

function or operation comment

\ integer division

modulo

$JOB special variable

$STORAGE special variable

$X special variable horizontal position of the cursor on the current device.

$Y special variable vertical position of the cursor on the current device.

$ASCII the code of the specified character.

$FIND the character position following the found string, or 0, or -1.

$LENGTH number of characters or pieces in the first argument.

$RANDOM a non-negative integer that is less than the argument.

Truth Value

To get a truth value from a string, first determine the numeric value. Once the numeric value is
known, then decide if it is zero. If it is zero, it is "false". Anything other than zero is "true". A "false"
value is given the character 0 (ASCII 48) and a "true" value is given the character 1 (ASCII 49).
To use MUMPS code to determine the truth value of any string, use the unary operator not (“’”) twice.

Example: set truth=''string
Example: 0 or 1

Coercion:
1. determine numeric value
2. if numeric value is zero, truth value is 0
3. if numeric value is non-zero, truth value is 1

Examples:
string numeric value truth value
12345 12345 1
49.95 49.95 1
-2 -2 1
25Kate 25 1
0.30- .3 0
+-+-5- 5 1
+18-6 18 1
TEST 0 0
-TEST 0 0
3.20E5 320000 1
-3.20E5 -320000 1
-3.20E-5 -.000032 0
3.20Elenor 3.2 1
3.20e5 3.2 1

3.20E2.5 320 1

Input To:

function argument comment

$SELECT 1st This is actually the first piece (by colon) of every argument of the
function.

post
conditional

IF command

Returned By:

function or operation comment

= true if string on left is identical, character for character, to string on
right.

[

]

>

<

&

!

,

$TEST special variable

Here endeth coercion.

Names

A MUMPS name is a general term that describes the format of several implicit data types. These are
described as:

• routine
• label
• variable

A name must begin with either a percent sign (%) or an alpha followed by 0 or more upper-case alpha
or numeric. While no explicit limit is placed on the length of a name, only the first eight (8) characters
are significant (that is, a standard MUMPS system will ignore any characters beyond the 8th character
position).

In this context, the term "variable" means an unsubscripted variable. A variable can be either local or
global.

The data types that follow are all address values (sometimes called pointer values). That is, the value
gives MUMPS a location, either the location of data (a variable name) or a location of a line of MUMPS
code (a routine, label, or a combination). None of these data types are coerced; the complete string is
used without modification and must be in the correct format for the context in which it is used.

Label

A label identifies a particular line of code within a routine. A label is not required for every line, but if
a label is present on a line it must either be a MUMPS name (see above) or a positive integer.

Format: name or positive integer

Examples:
A
START
J2
QWE3GY99
236
%DONE
%2D2

Input To:
function argument comment
$TEXT1 1st causes the function to return the complete text of

the line (in the current routine) named by the
label. The text will include the label. A space will
replace the line-start.

DO command
GOTO command

Returned By:
none

Line reference

A line reference identifies a particular line of MUMPS code within a routine by its relative position to
a particular label. The format is a label name or a label name followed by a plus sign ("+") followed by
a number. The number is the count of lines following the label to reach the line. The number cannot be
negative, but may be zero (0).
Format: name or positive integer
or name or positive integer followed by a plus sign followed by a non-negative integer

Examples:
A
START+0
J2
QWE3GY99+88
236+1 Note: This is the 1st line after line 236, not the 237th line.
%DONE
%2D2+2

Input To:

function argument comment

$TEXT1 1st causes the function to return the complete text of the line
(in the current routine) named by the line reference. The
text will include the label (if any). A space will replace
the line-start.

DO command

GOTO command

Returned By:
 none

Absolute Line Reference

An absolute line reference can be thought of as a line reference without an explicit label. The format is
a plus sign ("+") followed by a number. If each line in a routine was given a unique number starting
with the first line (given the number 1) and descending through the routine incrementing by 1, then
this number is the number used to identify the line in an absolute line reference.

Format: plus sign followed by a non-negative integer

Examples:
+0
+ 4
+1023

Input To:

function argument comment

$TEXT1 1st causes the function to return the complete text of the line (in the current
routine) named by the line reference. The text will include the label (if
any). A space will replace the line-start. If the absolute line reference is
“+0,” the routine name is returned.

Returned By:
 none

Routine Name

A routine name identifies a physical collection of MUMPS code (“physical” to differentiate from
“logical”). In all uses of a routine name, the name is preceded with a circumflex (“^”). This lead-in
character distinguishes a routine name from a label name.

Format: circumflex followed by a name.

Example:
^A
^J2
^DIC
^%DTC
^Z2345678

Input To:

function argument comment

$TEXT1 1st causes the function to return the complete text of the first line of
the routine. The text will include the label (if any). A space will
replace the line-start.

DO command

GOTO
command

JOB command

Returned By:
function or operation comment

$TEXT1 when the argument of the function is "+0", the name of the "current"
routine is returned.

Entry Reference

An entry reference can be either a line reference, a routine, or a combination that specifies a line
within a routine. In the latter case, the routine name is concatenated onto the end of the line reference.
Note that an entry reference with offset (example label + 2) is not allowed in parameter passing (see
Label Reference).

Format: Line reference
or routine
or line reference followed by a routine

Examples:
A
START+0

 ^A
J2^DIC
236+l^ %DTC

Input To:
function argument comment
$TEXT1 1st causes the function to return the complete text of the line

named by the line reference within the routine specified.
If no routine is specified, the current routine is used. The
text will include the label (if any). A space will replace
the line-start.

DO command may not use offset form with parameter passing: see
Label Reference.

GOTO command
JOB command must include a routine name.

may not use offset form with parameter passing-
see Label Reference.

Returned By:
none

Label Reference

A label reference is really a subset of the entry reference. The difference is that a label reference may
not use a line offset. The reason for the distinction between label reference and entry reference is that
parameter passing may only be used with label reference.

Format: label
or routine
or a label followed by a routine

Examples:

A

START

^A

J2^DIC

236^%DTC

Input To:

function argument comment

$TEXT1 1st causes the function to return the complete text of the line
named by the line reference within the routine specified.
If no routine is specified, the current routine is used. The
text will include the label (if any). A space will replace
the line-start.

$TEXT1 1st causes the function to return the complete text of the line
named by the line reference within the routine specified.
If no routine is specified, the current routine is used. The
text will include the label (if any). A space will replace
the line-start.

DO command required for parameter passing.

GOTO command

JOB command must include a routine name, required for parameter
passing.

Returned By:
none

Local Variable Name

These are names of local variables without subscripts (although they may name arrays). The variable
is in the format described by name. As can seen by the examples, a label, a routine, and a variable may
all have the same name. MUMPS knows which one is being referenced by the context of the reference.

Format: name

Examples:
A
START
J2
QWE3GY99
236
%DONE
%2D2
DIC
Z2345678
Input To:
function
$DATA
$GET
$QUERY

KILL command
LOCK command
NEW command
READ command
WRITE command

Returned By:
 none

Local Array Reference

MUMPS multidimensional arrays are identified by a variable name (that is, the name of the array). To
reference a cell within the array, a list of subscripts (additional address specifications) are appended to
the array name. The subscripts are enclosed in parentheses and separated by commas. A subscript
may be any string of printable ASCII characters, 1 to 63 characters long (see SUBSCRIPTS below).

Format: name followed by an open parenthesis followed by a list of subscripts (subscripts are
separated by commas; no leading or trailing commas on the list) followed by a close
parenthesis.

Examples:
A(2)
START("1/1/90","00:00")
J2("QWE3GY99")
QWE3GY99(2,19.2,"0.10")
%DONE("MD","College Park","MUMPS Users'
.....Group")
%2D2(“.”)
DIC(3,0)
Z2345678(“string subscripts!!!!!”)
Input To:
function
$data
$GET
$NEXT
$ORDER
$QUERY
KILL command
LOCK command
NEW command
READ command
WRITE command

Returned By:
function or operation comment

$QUERY returns either a full array reference or a null

Global Variable Name

These are names of global variables without subscripts (although they may name arrays). The
variable is in the format described by name. Global variables can be used interchangeably with the
corresponding local version except that globals may not be the argument of either the NEW or READ
commands. There may be a label, a routine, a local variable and a global variable all with the same
name. MUMPS knows which one is being referenced by the context of the reference.

Format: a circumflex followed by a name

Examples:
^A
^START
^J2
^QWE3GY99
^236
^%DONE
^%2D2
^DIC
^Z2345678

Input To:
function or Operator

$DATA
$GET
$QUERY
KILL command
LOCK command
WRITE command

Returned By:
 none

Global Array Reference

MUMPS multidimensional arrays are identified by a variable name (that is, the name of the array). To
reference a cell within the array, a list of subscripts (additional address specifications) are appended to
the array name. The subscripts are enclosed in parentheses and separated by commas. A subscript
may be any string of printable ASCII characters, 1 to 63 characters long (see Subscripts). A global
array can be used interchangeably with the corresponding local version except that globals may not be
the argument of either the NEW or READ commands.

Format: a circumflex followed by a name followed by an open parenthesis followed by a list of
subscripts (subscripts are separated by commas; no leading or trailing commas on the
list) followed by a close parenthesis.

Examples:
^A(2)
^START(" 1/1/90" ,"00:00")
^J2("QWE3GY99")
^QWE3GY99(2,19.2,"0.10")
^%DONE("MD","College Park”,”MUMPS Users'Group")
^%2D2(".")
^DIC(3,0)
^Z2345678("string subscripts!!!!!")
Input To:
function or operator
$data
$GET
$NEXT
$ORDER
$QUERY
KILL command
LOCK command
WRITE command

 Returned By:
function or operation comment

$QUERY returns either a full array reference or a null.

Subscript

Subscripts are often described as strings, but they are actually a separate data type with their own
format restrictions. Subscripts may not be greater than 63 characters and may only contain printing
ASCII characters (no control characters). A subscript may not be null.

Input To:
none

Returned By:

function or operation comment

$NEXT either a subscript or a "-1" (to signal no more subscripts).

$ORDER either a subscript or a null (to signal no more subscripts).

and The Rest...

The above are the major data types within MUMPS, but they do not make up the complete list. Below
is a list of some other unnamed data types requirements that either are expected in a particular
context, or are returned by some operation.

Input To:
function or operator argument comment

$FNUMBER 2nd must be an fncode that is a string of characters with each
character selected from the following list: "PT,+-"

READ may use formatting codes (!,#,or ?).

SET command one or more storage locations followed by an equal sign
("=") followed by an expression.

WRITE command may use formatting codes(!,#,or ?).

XECUTE command must be valid MUMPS code.

Returned By:
function or operation comment

$HOROLOG special variable two integers separated by a comma.

$DATA returns a 0, 1, 10, or 11

Expressions

Now that we have looked at how MUMPS handles data typing for each atomic process, we can look at
how all this fits together into more complex MUMPS statements. A MUMPS expression is a collection
of literals (quoted strings), variables, functions, and operators. Every MUMPS expression produces an
explicit data type of string. However, the format of the string will be determined by the operations
that produce the string.

Why is this important? Most functions and several commands will take expressions for their
arguments. It is up to the programmer to ensure that the expression will produce data in the correct
format (data type) for the context in which it will be used.

A simple example:
SET RM1="95W" ; we'll start with two variables,

SET RM2=" 95E" ; each containing a room number

IF RM1=RM2 DO PROCESS ; this IF command is checking to determine if the two variables
; are referencing the same room. Here, they are NOT the same
;(The equals sign checks string identity.)

IF RM1-RM2 DO PROCESS ; This IF statement does not perform the same check.
; The subtraction operator always takes the numeric value of a
; string, thus the expression becomes 95-95 which is further
; evaluated to O.

IF $E (RM1, $L(+RM1)) ?1A DO PROCESS

;The $LENGTH function will return an integer, which will be
; used to determine the character that is to be returned by the
; $EXTRACT. The $EXTRACT returns a string which is then
; pattern matched to decide if the string is all alphas. The pattern
; match operator returns truth value.

Another simple example follows:

SET X=7
WRITE X
SET X=7+1
WRITE X
SET X=”7+1”
WRITE X

Indirection

Once you understand data typing and expressions, it becomes only a small leap (deep chasm) to
indirection. The three kinds of indirection—name, argument, and subscript, each return a different
data type. Indirection says "What I'm looking for isn't stored here, but what is stored here is the name
of the location where what I'm looking for is really stored", only with less words. This process is called
"dereferencing".

Indirection can be done with a variable:
@x

or more complex expressions:
@$P(X,U,2,3)
@("VTX"_($L(NM,Z)-2))

As with the rest of MUMPS, the context of the indirection will determine the data type that is expected
to be returned as well as the format of the data that is actually returned.

It is not the intention of this discussion to explain fully the ins and outs, or ups and downs (it is a
REALLY deep chasm) of indirection. A discussion of data types in MUMPS will often end up
embroiled in expressions and indirection. The point is that a knowledge of MUMPS data types is
essential before a programmer can safely take advantage of the power and flexibility that MUMPS
provides.

MUMPS is not typeless.

Acknowledgments

The author wishes to thank Gretchen Bradfield and William J. Harvey for their help with this article.

References:
1. Michael Marcotty, Henry F. Ledgard, Programming Language Landscape. Chicago: Science

Research Associates, Inc., 1986.
2. Michael Cowlishaw, The REXX Language, Englewood Cliffs, NJ: Prentice Hall.
3. MUMPS Development Committee, X11/88-17 (Proposed 1990 ANSI MUMPS Language

Standard)

Endnote
 1 This is somewhat misleading since the $TEXT function does not take an expression as an argument but rather is
explicitly coded with the line reference. In all other functions an expression (as simple as a literal or as complicated as the
programmer wants to make it) can be used in any argument and MUMPS will coerce or assume the correct data type. With
the $TEXT function, the form of the argument is not an expression but the actual line reference. The only part of this
argument that may be an expression is the "offset" (the numeric portion of the line reference). To use this function in a
general way (such as a routine editor that isn't coded to load the same routine each time), the actual function must be built
using indirection and a series of concatenations (not recommended for the faint of heart).

