
X11/94-23

Mumps Development Committee

Extension to the MDC Standard
Type A Release of the mumps Development Committee

Library proposal

June 1994
Produced by the MDC Subcommittee #15

Programming Structures

Jamie Crumley, Chairman
mumps Development Committee

Kate Schell, Chairman
Subcommittee #15

The reader is hereby notified that the following MDC specification has been approved by the
mumps Development Committee but that it may be a partial specification that relies on
information appearing in many parts of the MDC Standard. This specification is dynamic in
nature, and the changes reflected by this approved change may not correspond to the latest
specification available.

Because of the evolutionary nature of MDC specifications, the reader is further reminded that
changes are likely to occur in the specification released, herein, prior to a complete republication
of the MDC Standard.

© Copyright 1994 by the mumps Development Committee. This document may be reproduced in
any form so long as acknowledgment of the source is made.

Anyone reproducing this release is requested to reproduce this introduction.

Library Proposal X11/94-23
July 11, 1994 Page 1 of 9

1. Identification
1.1 Title Library proposal

1.2 MDC proposer and sponsor
Proposer/Sponsor: Jon Diamond, Hoskyns Group

1.3 History of MDC actions
Date Doc# Action
June 94 This document Approved as MDC Type A
February 94 X11/94-13 Approved by SC15 Type A (23:4:4)
December 93 X11/SC15/94-3 Approved by MDCC-E (5:0:1)

1. All issues raised in Oct 93 meeting addressed.
2. Clarification added in complete library being
mandatory/optional, not individual elements
3. Mandatory/optional flag added to library element
parameter definitions

Aug/Oct 93 X11/SC15/93-32 Approved by MDCC-E and proposed as SC15 Type
A (remanded to TG)
1. Access to library elements changed from
$&LIB.SIN to $%SIN
2. The change in access implies that all library
elements must have a result, with resultant changes
to the proposal.
3. NAME added as a data type.

Jul 93 X11/TG14/93-4 Approved as SC15 Type B
June 93 X11/TG14/93-2 Approved as SC15 Type B with X11/TG14/93-4

corrections
June 93 X11/93-26 The concept of CODE and PROCEDURE library

elements deleted. Individual library elements
allowed to have character set profiles.

Feb 93 X11/93-2 Discussed in MDC/TG14 and MDCC-E
Oct 92 X11/92-44 Proposed as Type B - discussed in general terms in

MDC/TG14
Aug 92 Library extensions to ssvns
Apr 91 X11/SC8/91-2 Proposal guidelines and requirements for SC8

proposed as Type B
1990 ? Other proposals for library function specifications

2. Justification
2.1 Needs

There are a number of facilities which it is desirable to make available to developers in
mumps which are specialised in functionality or which do not justify incorporation into
implementations as intrinsic functions. In order to make these truly useful in portable

Library Proposal X11/94-23
July 11, 1994 Page 2 of 9

programs they need to be available on all mumps systems. In addition it would be
desirable if facilities could be implemented in all mumps systems without having to rely
on the mumps vendor to provide them. This would allow the construction and sharing of
useful functionality and allow for reduced time to market for new products and
developments.

2.2 Existing practice
No existing portable mumps libraries exist, although individual application developers
have produced libraries which are used throughout their own and other applications. Each
developer has to ensure that the name of such libraries and their entry points do not
overlap with other ones.

In other languages many functions are standardised in libraries and can thus be used by
application developers without worrying about being portable. Some of these libraries are
provided as part of an implementation and some as add-ons.

3. Description Of The Proposed Change
3.1 General Description

This proposal attempts to meet all the requirements as expressed at the meeting of
MDC/TG14 on 20th October 1992. These can be summarised as:

Mandatory Desirable

Availability Standardized, but may be replaced
by user MDC defines mandatory
library elements User defined
libraries are not always mandated
ssvn should be available to
determine presence Must be
guaranteeable on all MUMPS
systems

Mandatory libraries should be
Optionally installable

Implementation Implementable Mandatory libraries should be
optionally installable May be
supplied in MUMPS at vendors or
users discretion May be supplied
by other sources

Calling
mechanism

Explicit namespace separation
required (uniquely resolvable)

Call syntax must be simple C-
style include should be available
Should be able to escape to
different library for a single call

Content and
specification

Libraries may contain procedures,
functions, data or code-segments
MDC may support a registry of
library elements

The proposal sets out a format for specifications of library elements, how they are called,
how they are made available (or just mandating that an implementor provide a

Library Proposal X11/94-23
July 11, 1994 Page 3 of 9

mechanism for users to include their own code) and means to test what is or is not
available.

Note: The issue as to whether this document should document how
^$JOB($j,"LIBRARY") has been discussed and the TG agreed that this was a more
general issue relating to ssvns that should be tackled as a separate exercise.

3.2 Annotated Examples of Use
See X11/TG8/93-15 for a comprehensive example of a sample definition of a library
element.

Library definitions

A library function SIN might have a header definition of
SIN^MATH:REAL(X :REAL)

followed by the definition of the meaning of the SIN function.

In words this means that SIN is called via the function syntax from the library MATH,
has one real valued parameter (called X in the subsequent definition) and returns a real
result.

Another library element might be
PI^MATH:REAL

to return the mathematical value pi. This definition allows for no parameters, but returns a
real result.

Another example of a library definition might be
REPLACE^STRING:STRING(str:STRING,.SPEC:STRING)

which takes a string and transforms it according to the array SPEC. (Although this is only
an input array it needs to be passed by reference since it is an array.)

Finally,
MOVE^STRING(.in,.out,transform,max:INTEGER:O)

might be the definition of a function which moves data from one string or array to
another according to some transformation algorithm, which is executed a maximum
number of times (optional parameter). It has a result which is a string, but this might be a
success code or even always a null string.

Library accessing

The SIN function defined above would be accessed by
SET X=$%SIN^MATH(Y)

If this reference were coded as
SET X = $%SIN(Y)

then this wouldn't necessarily use the definition of SIN^MATH above. Instead the
library(s) defined in ^$JOB($J,"LIBRARY") would be used to access a SIN function.

The PI library function definition above is accessible by

Library Proposal X11/94-23
July 11, 1994 Page 4 of 9

S X = $%PI^MATH
since it has no parameters.

Finally, the MOVE example would be accessed as
s a = $%MOVE(.A,.B,C)

^$LIBRARY

The above definitions would result in the following nodes in ^$LIBRARY
^$LIBRARY("MATH","ELEMENT","PI")
^$LIBRARY("MATH","ELEMENT","SIN")
^$LIBRARY("STRING","ELEMENT","REPLACE")
^LIBRARY("STRING","ELEMENT","MOVE")

At run-time ^$JOB($J,"LIBRARY") would contain the accessible libraries. If the above
two were the only available ones then the entries might be
^$JOB($J,"LIBRARY",1)="MATH" and ^$JOB($J,"LIBRARY",2)="STRING", to
search through MATH before STRING, or ^$JOB($J,"LIBRARY","A")="STRING" and
^$JOB($J,"LIBRARY","X")="MATH", to search STRING before MATH. Note that the
final subscripts 1,2, "A" and "X" are used as examples in order to get the right sequencing
only.

3.3 Formalization
Amendments to RMDS X11/TG6/93-6

Add libraryref to the list of alternative elements in the definitions of exfunc and exvar
(7.1.4.8 and 7.1.4.9)

Add a new section
8.1.6.4 Library reference

libraryref ::= % libraryelement [^ library]
libraryelement ::= name
library ::= name

If no library is specified as part of a libraryref then the libraries specified in
^$JOB($J,"LIBRARY") are used. Note: This does not imply that the libraries
specified in ^$JOB($J,"LIBRARY") can necessarily be dynamically changed
during the lifetime of a process.

Unless explicitly specified in an individual libraryelement definition accessing a
libraryref has no effect on local variables for a process, $REFERENCE and
$TEST, except for a return value and changes to variables passed by reference.

If an argument to a libraryref has an invalid value (such as a value outside the
domain of the function) the behaviour of the reference to the libraryref is
undefined.

Library Proposal X11/94-23
July 11, 1994 Page 5 of 9

The restrictions specified in 8.1.7 Parameter passing also apply to the referencing
of libraryrefs.

If a 1ibraryelement or a library is not available for a library reference then an
error condition occurs with ecode = "M13".

Add a new section to the mumps standard.
n. Library

n.l Library definitions

A library consists of a set of libraryelements - functions and data which are
accessed from mumps and which have unique names within the library. The
access method for each libraryelement is the external calling syntax,which
normally has no side-effects.

A library is defined as being either mandatory or optional. library names starting
with a Z are reserved for implementors. library names starting with a Y are
reserved for users. All other unused library names are reserved for future use.

The mumps Standard Library is the set of library definitions in this standard.

The following librarys are defined:

n.1.1 Mandatory Libraries

. . .

n.1.2 Optional Libraries

. . .

n.2 Library Element Definitions

The definition of a libraryelement states which library the element belongs to,
return value type and full specification.

libraryelement names starting with a Z are reserved for implementors.
libraryelement names starting with a Y are reserved for users. All other unused
libraryelement names are reserved for future use.

A libraryelement definition is of the form:

libraryelementdef ::= libraryelement ^ library
libraryresult [(L libraryparam)]

libraryparam ::= [.] name [: [libdatatype] [:
libraryopt]]

libraryresult ::= [: libdatatype]

Library Proposal X11/94-23
July 11, 1994 Page 6 of 9

| BOOLEAN |
| COMPLEX |
| INTEGER |

libdatatype ::= | NAME |
| REAL |
| STRING |
| Z[unspecified] |

libraryopt ::= | M |
| O |

If a libraryparam starts with a period then this parameter is-passed by reference.

Z is the initial letter reserved for implementation specific libdatatypes. All other
values for libdatatypes are reserved for future expansion of the standard.

Input and output values to libraryelements undergo the appropriate data
interpretation below:

For BOOLEAN see 7.1.4.7 (Truth value).

COMPLEX is a number represented in the format REAL_"%"_REAL, (that is
two REAL numbers separated by the % character).

For INTEGER see 7.1.4.6.

For NAME see 7.1.5.15 (namevalue).

For REAL see 7.1.4.5 (Numbers not constrained to be INTEGER).

STRING is a string made up of any characters and not constrained in format.

If no libdatatype is specified for a libraryparam or libraryresult then the
libdatatype defaults to STRING.

If no libraryopt is specified then the libraryparam is M (mandatory). A libraryopt
of 0 specifies that the libraryparam is optional.

n.3 Availability of library elements

An implementation of mumps shall

a. provide the mandatory librarys defined in this standard

and

b. provide a means by which replacement definitions in routines of
libraryelements can be installed so that a routine can access them as if they were

Library Proposal X11/94-23
July 11, 1994 Page 7 of 9

part of the implementation. An implementation may additionally provide a means
by which non-mumps code can be installed to implement libraryelements.

An implementation may also provide a means by which specific librarys or
libraryelements of the MUMPS standard library are only optionally installed.

n.4 Library elements

Note: The mumps code that approximates any function in the following
definitions only serves as an example.

Editors Note: Library definitions will follow here in the standard.

Add a new ssvn

n.n ^$LIBRARY

^$LIBRARY provides information about the availability of libraries and library
elements in a system.

When and only when a library 1 exists, ^$LIBRARY(1) has a value; all non-
empty string values are reserved for future expansion of the standard. Library
information is stored beneath the ^$LIBRARY(library) node:

^$LIBRARY(1ibraryexpr,expr V
"ELEMENT",libraryelementexpr)

libraryexpr ::= expr V library

libraryelementexpr ::= expr V libraryelement

When and only when a library 1 and libraryelement e exist,
^$LIBRARY(1,"LIBRARY",e) has a value; all non-empty string values are
reserved for future expansion of the standard.

Insert a new ssvn node:

^$JQB(processidexpr,expr1 V "LIBRARY",expr2) =
libraryexpr

This node identifies a library currently available to the process. The order in
which the librarys are searched to locate a specific. libraryelement is defined by
the collating order of the values of expr2 for the specified librarys.

Editors note: There is already a prohibition on updating ssvns unless specified otherwise.
Since this is not done here "$JOB($J,"LIBRARY") could be fixed by the implementation
for the lifetime of a process.

Library Proposal X11/94-23
July 11, 1994 Page 8 of 9

4. IMPLEMENTATION IMPACTS
4.1 Impact on Existing User Practices and Investments

This would be very valuable, providing a higher degree of portability of code, without
collision of names between different packages and routines installed on the same system.

4.2 Impact on Existing Vendor Practices and Investments
The impact on vendors is relatively minor. An interface to some calling table would need
to be provided, which would allow either mumps or non-mumps code to be called from
a function call.

5. Closely related standards activities
5.1 Other X11 Proposals (Type A or Type B) Under Consideration

X11/SC13/93-54 REPLACE library function, -53 PRODUCE library function, -56
Mathlib/General, -57 Mathlib/Complex, -58 Mathlib/Trigonometry, -59
Mathlib/Hyperbolic etc

5.2 Other Related Standards Efforts
ISO/IEC 9899 - C Programming language.
ISO/IEC DIS 11430 - Generic package of elementary functions for ADA.

5.3 Recommendations For Co-ordinating Liaison
None.

6. Associated documents
X11/TG8/93-15 Library Proposal Format

7. Issues, Pros and Cons and Discussion
February 1994 meeting

Pros: Provides definition for libraries. Does not allow for optional elements within a
library. Allows MDC to declare a library either mandatory or optional. SC decided library
elements should not be optional.
Cons cited: Incomplete document. Does not allow for optional elements within a library.
Unfortunate use of metalanguage term datatype.

December 1993 MDCC-E meeting
Mandatory/optional suggested as part of parameter specification.

October 1993 meeting
Con: Incomplete formalization (index). Doesn't provide implementation specific
datatypes. Semantics of charset unclear. All these issues are addressed in the revised
proposal.

Library Proposal X11/94-23
July 11, 1994 Page 9 of 9

June 1993 meeting
Potentially dynamic nature of ^$JOB makes binding to external functions very difficult,
since this cannot be determined until run-time. Parameters passed by reference should be
handled as for external packages, however some library elements need this for their
operation (eg $REPLACE). Pro: Needed in many areas of work of the MDC, Allows
search order specification
Con: Library list should be subscripted
Straw polls:
Allow for NAME as datatype (7:1)
Library list to be subscripted (14:1)

8. GLOSSARY
Library

A library is a collection of library elements, with unique names, which are referenced
using a single library name. A library is defined as being either mandatory or optional.

Library element
A library element is an individual function which is separately defined and accessible
from a mumps process using the library reference syntax.

MUMPS Standard Library
The mumps Standard Library consists of all libraries and library elements defined within
the mumps Standard, whether mandatory or optional.

